Interpolation -- Mathematical modelsSee also what's at your library, or elsewhere.
Broader terms: |
Filed under: Interpolation -- Mathematical models
Items below (if any) are from related and broader terms.
Filed under: Interpolation- Interpolation and Approximation by Rational Functions in the Complex Domain (American Mathematical Society Colloquium Publications v20, second edition; 1956), by J. L. Walsh (page images at HathiTrust)
- A Course in Interpolation and Numerical Integration for the Mathematical Laboratory, by David Gibb (page images at Cornell)
- Extrapolation, Interpolation, and Smoothing of Stationary Time Series, With Engineering Applications (second printing; Cambridge, MA: Technology Press of the Massachusetts Institute of Technology; London: J. Wiley and Sons, 1950), by Norbert Wiener (page images at HathiTrust)
- The theory and practice of interpolation; including mechaical quadrature and other important problems concerned with the tabular values of functions. With the requisite tables. (T. P. Nichols, 1899), by Herbert L. Rice (page images at HathiTrust)
- Anwendung der differential- und integralrechnung auf geometrie: eine revision der principien. Vorlesung gehalten während des sommersemesters 1901 (In commission bei B.G. Teubner, 1902), by Felix Klein and C. H. Müller (page images at HathiTrust; US access only)
- Vorlesungen über mathematische Näherungsmethoden (F. Vieweg, 1905), by Otto Biermann (page images at HathiTrust; US access only)
- Coefficients for interpolation within a square grid in the complex plane ([Cambridge, Massachusetts] : [MIT], [1944], 1944), by Arnold N. Lowan, Herbert E. Salzer, and Mathematical Tables Project (U.S.) (page images at HathiTrust)
- A new formula for inverse interpolation ([Menasha, Wisconsin] ; [New York], [1944], 1944), by Mathematical Tables Project (U.S.) and Herbert E. Salzer (page images at HathiTrust)
- Coefficients for numerical differentiation with central differences ([Cambridge, Massachusetts], [1943], 1943), by Herbert E. Salzer and Mathematical Tables Project (U.S.) (page images at HathiTrust)
- Coefficients for inverse interpolation ([Cambridge, Massachusetts], [Massachusetts Institute of technology Press] 1944., 1944), by Herbert E. Salzer and Mathematical Tables Project (U.S.) (page images at HathiTrust)
- Notes for Math. 152-153: Differential-differences. University of Washington, Seattle. ([Seattle, 1945), by J. P. Ballantine (page images at HathiTrust)
- A short course in interpolation (Blackie and son limited, 1923), by E. T. Whittaker and George Robinson (page images at HathiTrust; US access only)
- Introduction to numerical analysis. (McGraw-Hill, 1956), by Francis Begnaud Hildebrand (page images at HathiTrust)
- Numerische Infinitesimal-rechnung (F. Dümmler, 1928), by Martin Paul Johannes Lindow (page images at HathiTrust; US access only)
- Grundlinien des wissenschaftlichen rechnens (B.G. Teubner, 1903), by Heinrich Bruns (page images at HathiTrust; US access only)
- Tables of Lagrangian interpolation coefficients. (Columbia University Press, 1944), by Mathematical Tables Project (U.S.) (page images at HathiTrust)
- Die Interpolation und ihre Verwendung bei der Benutzung und Herstellung mathematischer Tabellen (Zepfel ;, 1906), by Sigmund Mauderli (page images at HathiTrust; US access only)
- Newton's interpolation formulas (C. & E. Layton, 1927), by Isaac Newton and Duncan Cumming Fraser (page images at HathiTrust; US access only)
- Formules d'interpolation. (Gauthier-Villars, 1891), by Rodolphe Radau (page images at HathiTrust)
- Interpolationsrechnung (B. G. Teubner, 1909), by T. N. Thiele (page images at HathiTrust; US access only)
- Lec̜ons sur les séries d'interpolation (Gauthier-Villars et cie, 1926), by N. E. Nørlund and René Lagrange (page images at HathiTrust; US access only)
- Methods of mathematical analysis and computation. (Wiley, 1963), by John G. Herriot (page images at HathiTrust)
- Tables of Lagrangian interpolation coefficients. (Columbia university press, 1948), by Mathematical Tables Project (U.S.) (page images at HathiTrust)
- On the construction of tables and on interpolation. (Cambridge university press [etc., etc.], 1935), by Karl Pearson (page images at HathiTrust; US access only)
- Derivation of the United States mortality table by osculatory interpolation. Registration states, twelfth census ([No imprint]), by James W. Glover (page images at HathiTrust; US access only)
- Newton, Cotes, Gauss, Jacobi : vier grundlegende Abhandlungen über Interpolation und genäherte Quadratur (1711, 1722, 1814, 1826) (Verlag von Veit, 1917), by Arnold Kowalewski (page images at HathiTrust; US access only)
- A treatise on practical astronomy, as applied to geodesy and navigation. (J. Wiley & sons, 1885), by C. L. Doolittle (page images at HathiTrust)
- Coefficients of Everett's central difference interpolation formula (Cambridge University Press, 1921), by Alexander John Thompson (page images at HathiTrust; US access only)
- Construction of tables and on interpolation (Cambridge university press ;, 1920), by Karl Pearson (page images at HathiTrust)
- Certain generalizations of osculatory interpolation ([n.p., 1924), by John Franklin Reilly (page images at HathiTrust)
- A treatise on practical astronomy : as applied to geodesy and navigation (J. Wiley & sons, 1992), by C. L. Doolittle (page images at HathiTrust; US access only)
- A treatise on practical astronomy, as applied to geodesy and navigation. (J. Wiley & son, 1910), by C. L. Doolittle (page images at HathiTrust)
- Seven-figure logaithms of numbers from 1 to 108000, and of sines, cosines, tangents, cotangents to every 10 seconds of the quadrant, with a table of proportional parts (Williams and Norgate, 1901), by Ludwig Schrön and Augustus De Morgan (page images at HathiTrust; US access only)
- A treatise on practical astronomy, as applied to geodesy and navigation (J. Wiley, 1900), by C. L. Doolittle (page images at HathiTrust)
- A FORTRAN subroutine for table generation by data interpolation (Oak Ridge National Laboratory, 1962), by S. K. Penny, U.S. Atomic Energy Commission, and Oak Ridge National Laboratory. Neutron Physics Division (page images at HathiTrust)
- Traité des différences et des séries; faisant suite au Traité du calcul différentiel et du calcul intégral. (An VIII, 1800), by S. F. Lacroix (page images at HathiTrust)
- A treatise on practical astronomy, as applied to geodesy and navigation. (J. Wiley & son, 1890), by C. L. Doolittle (page images at HathiTrust)
- A course in interpolation and numerical integration for the mathematical laboratory (G. Bell & Sons, ltd., 1915), by David Gibb (page images at HathiTrust)
- Interpolationsrechnung (B.G. Teubner, 1909), by T. N. Thiele (page images at HathiTrust; US access only)
- Anwendung der Differential- und Integralrechnung auf Geometrie: eine Revision der Principien. Vorlesung gehalten während des Sommersemesters 1901 (In Commission bei B. G. Teubner, 1902), by Felix Klein and C. H. Müller (page images at HathiTrust; US access only)
- Quantitative analysis of the reconstruction performance of interpolants (National Aeronautics and Space Administration, Scientific and Technical Information Office ;, 1987), by Donald L. Lansing, Stephen Keith Park, and Langley Research Center (page images at HathiTrust)
- Some aspects of essentially nonoscillatory (ENO) formulations for the Euler equations (National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division ;, 1990), by Sukumar R. Chakravarthy, Langley Research Center, and Rockwell International. Science Center (page images at HathiTrust)
- NASA TR R-382 (National Aeronautics and Space Administration ; [For sale by the Office of Technical Services, Department of Commerce, Washington, D.C. 20230], 1972), by William P. Dotson, Joe H. Wilson, Manned Spacecraft Center (U.S.), and United States National Aeronautics and Space Administration (page images at HathiTrust; US access only)
- General lagrangian interpolation formulas (National Aeronautics and Space Administration, 1968), by C. E. Velez (page images at HathiTrust)
- On the error propagation of some interpolation formulas for second-order differential equations : by Erwin Fehlberg. (National Aeronautics and Space Administration, 1963), by Erwin Fehlberg and George C. Marshall Space Flight Center (page images at HathiTrust)
- Numerically stable interpolation formulas with favorable error propagation for first- and second-order differential equations (National Aeronautics and Space Administration, 1961), by Erwin Fehlberg and George C. Marshall Space Flight Center (page images at HathiTrust)
- Newton's interpolation formulas. (London, 1919), by Duncan Cumming Fraser (page images at HathiTrust; US access only)
- Sur une formule d'interpolation. (s.n., 1877), by M. F. Gome︡s Teixeira (page images at HathiTrust)
- A method of bivariate interpolation and smooth surface fitting based on local procedures (U.S. Office of Telecommunications, 1973), by H. Akima (page images at HathiTrust)
- A method of bivariate interpolation and smooth surface fitting for values given at irregularly distributed points (U.S. Dept. of Commerce, Office of Telecommunications :, 1975), by H. Akima and Institute for Telecommunication Sciences (page images at HathiTrust)
- Tables de logarithmes a sept décimales, pour les nombres depuis 1 jusqu'a 108000 et pour les fonctions trigonométriques de dix en dix secondes (Gauthier-Villars, 1908), by Heinrich Ludwig Friedrich Schrön (page images at HathiTrust; US access only)
- On a new interpolation formula ([London, 1901), by J. D. Everett (page images at HathiTrust)
- On interpolation formulae : A sequel to paper On the algebra of difference tables (London, 1901), by J. D. Everett (page images at HathiTrust)
- A treatise on practical astronomy : as applied to geodesy and navigation (J. Wiley & Sons, 1888), by C. L. Doolittle (page images at HathiTrust)
- Stability and convergence of general multistep and multivalue methods with variable step size. (Dept. of Computer Science, University of Illinois, 1972), by Kai-wen Tu (page images at HathiTrust)
- The theory of practice of interpolation; including mechanical quadrature and other important problems concerned with the tabular values of functions. (T. P. Nichols, 1899), by Herbert L. Rice (page images at HathiTrust)
- A course in interpolation and numerical integration for the mathematical laboratory (G. Bell & sons, ltd., 1915), by David Gibb (page images at HathiTrust)
- A treatise on practical astronomy, as applied to geodesy and navigation. (J. Wiley & son, 1903), by C. L. Doolittle (page images at HathiTrust)
- A method of smooth curve fitting (Boulder, Colo. : Institute for Telecommunication Sciences, 1969., 1969), by H. Akima (page images at HathiTrust)
- Interpolation by harmonic polynomials ([Washington, D.C.] : Air Force Office of Scientific Research, United States Air Force, 1961., 1961), by John Hamilton Curtiss, University of Miami, and United States. Air Force. Office of Scientific Research (page images at HathiTrust)
- On the Interpolation of analytic families of operators acting on Hp spaces ([Washington, D.C.] : [United States Air Force, Office of Scientific Research], [1957], 1957), by Elias M. Stein, Guido Weiss, United States. Air Force. Office of Scientific Research, and Massachusetts Institute of Technology. Department of Mathematics (page images at HathiTrust)
- Solution of the Dirichlet problem for the ellipse by interpolating harmonic polynomials (Washington, D.C. : United States Air Force, Office of Scientific Research, 1958., 1958), by J. L. Walsh, United States. Air Force. Office of Scientific Research, and Harvard University (page images at HathiTrust)
- On the interpolation of L p functions by Jackson polynomials (Washington D. C. : Mathematical Science Directorate, Office of Scientific Research, U.S. Air Force, 1960., 1960), by Richard P. Gosselin and United States. Air Force. Office of Scientific Research (page images at HathiTrust)
- Polynomial interpolation in points equidistributed on the unit circle (Washington D. C. : Mathematical Sciences Directorate, Office of Scientific Research, U.S. Air Force, 1961., 1961), by J. H. Curtiss and United States. Air Force. Office of Scientific Research (page images at HathiTrust)
- A stochastic treatment of some classical interpolation problems / Dc prepared by J. H. Curtiss, University of Miami. (Washington D. C. : Office of Scientific Research, U.S. Air Force, 1960., 1960), by J. H. Curtiss and United States. Air Force. Office of Scientific Research (page images at HathiTrust)
- A multivariable interpolation formula (L. G. Hansom Field, Bedford, Massachusetts : Air Force Cambridge Research Laboratories, Office of Aerospace Research, United States Air Force, 1968., 1968), by John A. Jr Pustaver and Air Force Cambridge Research Laboratories (U.S.) (page images at HathiTrust)
- Stirlings interpolationsrække (A. F. Høst & søn, 1924), by N. E. Nørlund (page images at HathiTrust; US access only)
- Practical astronomy (J. Wiley & Sons ;, 1885), by C. L. Doolittle (page images at HathiTrust)
More items available under broader and related terms at left. |